

© 2021 HighByte, Inc. All rights reserved.

1

HighByte® Intelligence Hub

Version 2.2

User Guide

© 2021 HighByte, Inc. All rights reserved.

2

Table of Contents

1. System Requirements ... 4

1.1 Hardware ... 4

1.2 Operating System ... 4

1.3 Browser ... 4

2.0 Required Dependencies ... 5

2.1 Java Runtime Environment (JRE)... 5

3.0 Intelligence Hub Runtime ... 7

3.1 Installation ... 7

3.1.1 Upgrading ... 7

3.2 Usage .. 8

3.2.1 Starting the Runtime .. 8

3.2.2 Stopping the Runtime... 9

3.2.3 Application-Level Settings ... 9

3.2.4 Project Configuration Backup... 11

3.2.5 Application-Level Redundancy ... 11

4.0 Intelligence Hub Configuration.. 12

4.1 Administration .. 12

4.1.1 Login.. 12

4.1.2 Set Administrative Password ... 13

4.1.3 Create a User .. 14

4.1.4 Create a Role .. 15

4.1.5 Create a Certificate .. 16

4.2 Project Configuration ... 18

4.2.1 Create a Connection ... 18

4.2.2 Create an Input ... 24

4.2.3 Create an Output ... 30

4.2.4 Create a Flow for a Single Input / Output .. 35

4.2.5 Create a Model .. 37

4.2.6 Create a Modeled Instance .. 39

4.2.7 Create a Flow with a Modeled Instance ... 41

4.3 Event Log and Troubleshooting ... 42

5.0 Central Configuration .. 43

5.1 Enable Central Configuration... 43

5.2 Create a Network Group ... 43

© 2021 HighByte, Inc. All rights reserved.

3

5.3 Connect a Remote Hub .. 44

5.4 Rename the Remote Hub.. 45

5.5 Remotely Configure the Hub ... 45

5.6 Compare Two Hubs ... 46

5.7 Sync Objects Between Hubs ... 47

Appendix A – Security... 49

AWS Token Security .. 49

Azure IoT Hub & Azure Event Hubs ... 49

Microsoft SQL Server, MySQL, PostgreSQL ... 49

MQTT Security .. 50

OPC UA Security ... 50

REST Client .. 51

External Identity Provider Setup ... 52

Appendix B – Expressions and Default Values .. 55

Expressions.. 55

Default Values .. 55

Appendix C – REST Output Templates ... 57

Appendix D – OSIsoft PI AF SDK Connector ... 61

Appendix E – HTTP Server ... 62

© 2021 HighByte, Inc. All rights reserved.

4

1. System Requirements

The following system requirements must be met to run HighByte Intelligence Hub:

1.1 Hardware

• 1.4 GHz Processor

• 1 GB RAM

• 500 MB Available Disk Space

• Network Capable (TCP)

Note: These are minimal system requirements. Actual hardware requirements will vary based on product

configuration.

1.2 Operating System

• Windows Server 2012 / 2016 / 2019

• Windows 8 / 10

• Linux

• MacOS

1.3 Browser

The Intelligence Hub is configured using a browser, and by default is accessible on

http://localhost:45245. The following browser versions are fully supported.

• Chrome v60+

• Firefox v60+

• Microsoft Edge v79+

• Safari v12+

http://localhost:45245/

© 2021 HighByte, Inc. All rights reserved.

5

2.0 Required Dependencies

The following dependencies must be installed to run HighByte Intelligence Hub:

Check out the HighByte YouTube Channel for video tutorials on how

to install the Intelligence Hub and any required dependencies on

Windows 10 and Ubuntu Linux.

2.1 Java Runtime Environment (JRE)

The Intelligence Hub runtime requires Java SE 11 or later. HighByte recommends using the OpenJDK

14 or Oracle JRE 1.11 distribution.

Step 1. Check to see if a JRE is already installed

A. From a command or terminal prompt execute java -version

1. If the command fails due to java not existing, proceed to Step 2.

2. If openjdk version is 14.0.xxx or greater (Figure 1a) OR java version is 1.8.xxx or

greater (Figure 1b), a valid JRE is already installed and you can skip the remaining

steps in this section. Otherwise, proceed to Step 2a (OpenJDK install) or Step 2b

(Oracle JRE install). See Figure 1.

Figure 1a. OpenJDK Distribution

Figure 1b. Oracle Distribution

Step 2a. Install OpenJDK JRE

A. Download OpenJDK 14 from the web. Currently available at OpenJDK 14.

https://www.youtube.com/playlist?list=PLj-ej4J89GKRlCbIw03MtzeydpkcRUMPq
https://jdk.java.net/14/

© 2021 HighByte, Inc. All rights reserved.

6

B. Follow the instructions that accompany the OS dependent distribution that was downloaded to

install the JRE for your system.

C. Close any command or terminal prompt windows that are currently open.

D. Re-run Step 1 to verify the JRE was properly installed.

Step 2b. Install Oracle JRE

A. Download JRE SE Version 1.11.xxx from the web. Currently available at Oracle Java SE

Downloads. Please review Oracle’s latest license to ensure compliance for use within your

organization.

B. Follow the instructions that accompany the OS dependent distribution that was downloaded to

install the JRE for your system.

C. Close any command or terminal prompt windows that are currently open.

D. Re-run Step 1 to verify the JRE was properly installed.

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html

© 2021 HighByte, Inc. All rights reserved.

7

3.0 Intelligence Hub Runtime

3.1 Installation

Check out the HighByte YouTube Channel for video tutorials on how

to install the Intelligence Hub and any required dependencies on

Windows 10 and Ubuntu Linux.

Step 1. Install Required Dependencies

A. See section Required Dependencies above.

Step 2. Install Runtime

A. Extract HighByte-Intelligence-Hub-2.x (provided with this documentation) to a location where

you have read/write privileges.

B. Copy the extracted contents of HighByte-Intelligence-Hub-1.x/runtime to a location where you

have read/write/execute privileges in order run the HighByte Intelligence Hub runtime.

3.1.1 Upgrading

Check out the HighByte YouTube Channel for video tutorials on how

to upgrade the Intelligence Hub to the latest version.

Method A: Preserving prior installation(s)

Step 1. Install a fresh copy of the latest version to a new folder (e.g., /HighByte/IntelligenceHub-2.x)

by following the instructions in 3.1.

Step 2. Stop the previous installation’s runtime service by running the stop-[OS] command file for

your operating system.

Step 3. Redirect the new installation’s application and store and forward data directories

A. If you have not already done so in an earlier install or upgrade, create a common directory for

application and store and forward directories that all HighByte Intelligence Hub installations

will share (e.g., /HighByte/IntelligenceHub/AppData and

/HighByte/IntelligenceHub/StoreForwardData). Next, locate and copy the preexisting

application data files (including intelligencehub-certificatestore.pkcs12, intelligencehub-

configuration.json, intelligencehub-events.log, intelligencehub-state.dat and intelligencehub-

users.dat) to the application data directory. Finally, if you are using the store and forward

capabilities of the product, locate and copy the preexisting store and forward files (including

all files with a .db extension) to the store and forward data directory.

B. Rename the intelligencehub-settings.json.template file located in the new installation folder to

intelligencehub-settings.json. Open the intelligencehub-settings.json file and set the

application and store and forward data directories. An example is shown below:

 {

 "settings": {

 "directories" : {

 "appData" : "/HighByte/IntelligenceHub/AppData ",

 "storeForwardData" : "/HighByte/IntelligenceHub/StoreForwardData "

 },

https://www.youtube.com/playlist?list=PLj-ej4J89GKRlCbIw03MtzeydpkcRUMPq
https://www.youtube.com/playlist?list=PLj-ej4J89GKRlCbIw03MtzeydpkcRUMPq

© 2021 HighByte, Inc. All rights reserved.

8

…

Note: On Windows you will need to escape all forward slashes as they have special meaning in

JSON (the format of this settings file). For example, “appData” :

“C:\\HighByte\\IntelligenceHub\\AppData”.

When complete, save and close intelligencehub-settings.json.

Method B: Overwrite prior installation

Step 1. Extract HighByte-Intelligence-Hub-2.x (provided with this documentation) to a location where

you have read/write privileges.

Step 2. Stop the previous installation’s runtime service by running the stop-[OS] command file for

your operating system.

Step 3. Copy the extracted contents of HighByte-Intelligence-Hub-1.x/runtime to the location where

you previously installed the HighByte Intelligence Hub runtime and overwrite all pre-existing files.

3.2 Usage

The runtime currently executes as a console-based service that requires the user to start and stop it

manually through command files included with the product. During execution, the runtime will emit

messages that indicate informational, warning, and error events to the console window to provide the

user with relevant feedback. These messages are also written to a log file for archival purposes.

3.2.1 Starting the Runtime

A. Go to the directory where you extracted the contents of HighByte-Intelligence-Hub-

2.x/runtime.

B. Start the runtime by executing the start-[OS] file associated with your OS (e.g., start-

windows.bat, ./start-linux.sh, ./start-macos.sh). See Figure 2.

Figure 2

C. The runtime will continue to run until stopped.

© 2021 HighByte, Inc. All rights reserved.

9

3.2.2 Stopping the Runtime

A. Go to the directory where you extracted the contents of HighByte-Intelligence-Hub-

2.x/runtime.

B. Stop the runtime by executing the stop-[OS] file associated with your OS (e.g., stop-

windows.bat, ./stop-linux.sh, ./stop-macos.sh). See Figure 3.

Figure 3

C. The runtime will finish any remaining tasks and shutdown.

3.2.3 Application-Level Settings

Application-level settings are set in the intelligencehub-settings.json file located in the runtime

directory. The installation package includes a template file for these settings named intelligencehub-

settings.json.template to ensure future updates do not overwrite any custom application settings.

A. Go to the directory where you extracted the contents of HighByte-Intelligence-Hub-

2.x/runtime.
B. Open the intelligencehub-settings.json file with any text editor. If the file does not exist, copy

or rename intelligencehub-settings.json.template to intelligencehub-settings.json. Available

settings are as follows:

Setting Description

directories.appData

Specifies the location for loading and saving configuration, event log, user
management, and other application data files. If this setting is not specified

or is invalid, application data files will be stored in the runtime directory.

Note: Specifying a Windows path requires any path delimiters (‘\’) to be
properly escaped. For example, a path to C:\Program
Data\HighByte\Intelligence Hub should be set as
“C:\\ProgramData\\HighByte\\Intelligence Hub”.

directories.storeForwardData

Specifies the location for loading and saving store and forward data files. If
this setting is not specified or is invalid, store and forward data files will be
stored in the runtime directory.

Note: Specifying a Windows path requires any path delimiters (‘\’) to be
properly escaped. For example, a path to

C:\ProgramData\HighByte\Intelligence Hub should be set as
“C:\\ProgramData\\HighByte\\Intelligence Hub”.

© 2021 HighByte, Inc. All rights reserved.

10

configuration.scheme
Specifies whether the REST based configuration API should be exposed via
http or https.

configuration.port Specifies which http/https port the REST based configuraton API listens on.

configuration.rootDirectory

Specifies the location for the product configuration component files for self-
hosting. If this setting is not specified it defaults to a relative path used in
the packaged installer (i.e., ../configuration). If the setting is invalid or the
path is invalid, the runtime will not self-host the configuration component.

Note: Specifying a Windows path requires any path delimiters (‘\’) to be
properly escaped. For example, a path to
C:\ProgramData\HighByte\Intelligence Hub should be set as
“C:\\ProgramData\\HighByte\\Intelligence Hub”.

configuration.centralConfig
Specifies if the hub is in central configuration mode, allowing it to be used to
remotely configure other hubs. Set to True to enable this capability. The
default setting is False.

configuration.autoSaveInterval

Specifies the maximum interval in seconds that the configuration file is
saved after a configuration change is made. Defaults to 60 seconds. The

minimum is 5 seconds and the maximum is 3600 seconds (1 hour).

configuration.backupCopies

Specifies the maximum number of configuration copies to backup. The
default is 50. The minum value is 0 (no backups) and the maximum is 100.

When enabled, a ‘backups’ directory is created in the application directory.
The existing configuration file is copied to the backup directory prior to
saving any new changes to the configuration. If the maximum backups

already exist, the oldest backup (based on the last time the file was editted)
is deleted from the backup directory.

log.fileSizeMB

Specifies the maximum event log file size in megabytes. The valid range is
10–1000. If this setting is not specified or is invalid, a value of 100 will be
used.

Once the file reaches the limit, the oldest events are moved into a backup
file (.bak) and a new event log file is created. If a backup file already exists,
it will be overwritten.

log.logAuditEvents

Specifies if the hub logs audit events for objects (Connections, Models, etc)

that are changed via the REST API. When enabled, audit events are logged

for creation, update, and delete events. These events are logged to the

event log and are of type AUDIT. Defaults to False.

redundancy.backup.enabled

Specifies if the hub is running as a redudancy backup to another primary
hub.

See Application-Level Redundancy for more details.

redundancy.backup.primary.uri

Specfies the URI for the primary hub’s configuration interface. This will be

based on the primary’s configuration.scheme and configuraton.port settings
described above and its host address. For example, http://127.0.0.1:45245.

redundancy.backup.primary.pingIntervalSeconds
Specifies how often to ping the primary (in seconds) to ensure it is
operational. The valid range is 1-3600. If this setting is not specified, a
value of 10 will be used.

redundancy.backup.primary.pingAttempts
Specifies how many failed attempts should occur before promoting the
backup to active. The valid range is 1-10. If this setting is not specified, a
value of 1 will be used.

authentication.providers

Specifies the list of identity providers that the application will support.

Identity providers will be specified using an array that contains field specific
names.

Note: The application only supports internal (pre-existing HighByte
Intelligence Hub specific authentication, more information can be found in
section 4.2) and saml2 login as of right now.

authentication.saml2
Specifies all SAML 2.0 specific settings. More information about supported
SAML 2.0 settings can be found in the External Identity Provider Setup
under Appendix A.

A. Save any changes and restart the runtime service for the updated application-level settings

changes to take effect.

© 2021 HighByte, Inc. All rights reserved.

11

3.2.4 Project Configuration Backup

To back up the project configuration, use the configuration.backupCopies setting (see Application-

Level Settings). This will backup existing configurations any time the project is changed, allowing you

to recover an existing project in the event that a project is corrupted.

To recover an old project configuration, perform the following steps:

A. Stop the runtime.

B. Delete the intelligencehub-configuration.json from the application directory.

C. Copy the desired configuration.json file from the backup directory to the application directory

and rename it to intelligencehub-configuration.json.

D. Start the runtime.

3.2.5 Application-Level Redundancy

To setup application-level redundancy, you will need perform the following steps:

A. Install two copies of the HighByte Intelligence Hub on separate machines. Identify one as the

primary hub and the other as the backup hub.

B. Configure and start the primary hub

a. There are no application-level settings that need to be set for the runtime identified as

the primary hub.

b. The primary hub should be started and will run with no knowledge of any backup hub.

C. Configure and start the backup hub

a. Enable the backup hub and set the primary uri, pingIntervalSeconds and pingAttempts

(see Application-Level Settings).

b. Restart the backup hub for these changes to take effect.

With the primary and backup hubs running, application-level redundancy operates as follows:

A. The backup will start in standby mode. No flows will be started.

B. The backup will ping the primary at a rate set by pingIntervalSeconds. In the event the

primary does not respond, the backup will continue to ping the primary until the number of

successive failures is equal to pingAttempts.

C. Once failed pingAttempts is reached, the backup will transition to active mode and any flows

that are enabled will be started.

D. In active mode, the backup will continue to ping the primary at a rate set by

pingIntervalSeconds.

E. Once the backup successfully pings the primary, all flows will be stopped and the backup will

transition to standby mode.

F. The process will repeat until the backup hub is stopped.

Note: There is no automatic project synchronization between the primary and backup hubs. The user

will need to setup or deploy (through central hub management) a project for the primary and backup

hubs. This can be the same project or different project in the event the backup should use alternate

connections, etc.

© 2021 HighByte, Inc. All rights reserved.

12

4.0 Intelligence Hub Configuration

By default, the Intelligence Hub Configuration is self-hosted, meaning it doesn’t require a 3rd party

web server. By unzipping the default installer to disk, and launching the runtime, the configuration is

available via the browser address http://localhost:45245.

It is possible to host the configuration separately via IIS, Tomcat, or any other webserver. To do this,

please see the appendix for installation instructions.

4.1 Administration

The usage instructions assume the runtime and configuration are installed and running per the

instructions above.

4.1.1 Login

The runtime requires an administrative password to login and make configuration changes.

A. To log into the runtime and make configuration changes, type in the administrative password

and click the Login button. By default, the administrative password is empty and should be set

after the first login (see 4.2.2). See Figure 4.

Figure 4

B. To logout, click the Logout icon. See Figure 5.

http://localhost:45245/

© 2021 HighByte, Inc. All rights reserved.

13

Figure 5

4.1.2 Set Administrative Password

It is highly recommended that a strong administrative password be set after installation.

A. Login to the runtime with the current administrative password (default is empty).

B. Click Admin in the configuration’s Main Menu, click the Users tab, and then click the Select the

Details for the built-in administrator account. See Figure 6.

Figure 6

C. Set the new password and Click the Save button to commit the password. Logout and re-Login

with the new credentials. See Figure 7.

© 2021 HighByte, Inc. All rights reserved.

14

Figure 7

4.1.3 Create a User

Users can be created and assigned certain roles and/or claims to allow them to perform certain types of

operations.

A. Click Admin in the configuration’s Main Menu, click the Users tab, and then click the Create

User button. See Figure 8.

Figure 8

B. Enter the Username and Password. Click Next to continue. See Figure 9.

Figure 9

© 2021 HighByte, Inc. All rights reserved.

15

C. Select the Roles and/or set the Claims the user should inherit. Click Submit to add the user.

See Figure 13. Claims take the form of resource:action, where resource is the object (e.g.,

connection) and action is the operation that can be performed in CRUD terminology (create,

read, update, delete). Wildcard syntax like connection:* is also supported.

A list of Claim resources that can be set is as follows:

Resource Description

connection Connections, includes inputs and outputs

model Models

instance Instances

flow Flows

network Network hubs, groups, and sync operations

log The event log

user Users, roles, and claims

certificate Certificates

Below are example claims.

Claim Description

* Admin claim that provides access to all resources and operations

connection:* Run any operation on connections

*:read Access to read all resources

connection:read Read only connections

user:create Create new users

user:update Edit existing users

user:delete Delete users

network:create Create new network groups, sync objects between groups

Figure 10

4.1.4 Create a Role

Roles can be created and assigned claims that can be inherited by one or more users. The roles allow

the type of operations a class of users may perform.

A. Click Admin in the configuration’s Main Menu, click the Users tab, and then click the Create

Role button. See Figure 11.

© 2021 HighByte, Inc. All rights reserved.

16

Figure 11

B. Enter a Name to represent the new role. See Figure 12.

Figure 12

C. Set the Claims the user assigned to this role should inherit. Click Submit to add the role. See

Figure 13.

Figure 13

4.1.5 Create a Certificate

Certificates are commonly used to secure communications and authenticate clients. An example is

using certificates with the MQTT connector to send and receive data from AWS IoT Core or AWS IoT

Greengrass. In this case, the self-signed certificate for AWS is used to secure the connection and AWS

provides a public and private key to authenticate the hub. Use the steps in the preceding sections to

import certificates into the hub and use them in connectors.

A. Click Admin in the configuration’s Main Menu, click the Certificates tab, and then click the

Create Role button. See Figure 14.

© 2021 HighByte, Inc. All rights reserved.

17

Figure 14

HighByte Intelligence Hub may automatically generate some
certificates/keys on your behalf (e.g., app-certificate* are application

instance specific certificates leveraged by OPC UA connections). You

may set these named certificates to your own public/private keys

based on your company’s internal IT policies.

B. Enter an Alias to represent the new certificate. See Figure 15.

Figure 15

C. Insert the textual representation of the Public and/or Private keys. See Figure 16.

Use this field to import public certificates, often used to secure TLS/SSL and HTTPS

connections. Open the certificate file in a text editor and copy all of the text into this field. An

example Public Key will be decorated with text that begins with -----BEGIN CERTIFICATE-----

and ends with -----END CERTIFICATE-----. Copy all of the text (including the BEGIN and END

parts) into the field.

Private Key is used in addition to Public Key to import public/private key pairs into the hub. To

do this, open the private key file in a text editor and copy all of its contents into the Private

Key field. It should start with -----BEGIN RSA PRIVATE KEY----- and end with -----END RSA

PRIVATE KEY-----. Also, make sure you’ve included the public part of the key in Public Key.

© 2021 HighByte, Inc. All rights reserved.

18

Figure 16

4.2 Project Configuration

The usage instructions assume the runtime and configuration are installed and running per the

instructions above.

4.2.1 Create a Connection

A connection represents a path to a source that contains inputs that can be read or outputs that can be

written to.

A. Click Connections in the configuration’s Main Menu and then Click Create Connection to get

started. See Figure 17.

Figure 17

B. Enter a Name to represent the connection. Names can only contain alphanumeric and

underscore characters (e.g., A-Z, a-z, 0-9 or _). Optionally enter in a Description for the

connection. Click Next to continue. See Figure 18.

© 2021 HighByte, Inc. All rights reserved.

19

Figure 18

C. Select the Protocol. Depending on the protocol, set the Hostname, Port and optional Path

to set the desired URI for the connection Click Next to continue. See Figure 19.

Figure 19

D. Set any Connection General and Protocol Specific Settings. Click Submit to add the

connection and return to the main Connection page. General and Protocol Specific Settings

are described below.

© 2021 HighByte, Inc. All rights reserved.

20

General Settings

Store and Forward Description

Enabled Specifies whether store and forward is enabled for the connection.

Max Entries Per Output Maximum number of store and forward entries per output in the
event writing to a connection’s output fails. Once the maximum is
reached, any new output data is discarded and a message is logged.

Upon re-establishing a connection, stored outputs are written in the
same order they were entered into the store (FIFO). An output’s
write entry is only removed from the store once it has been
successfully acknowledged by the destination application. All stored
output writes are written as fast as possible to ensure the delivery of
newer data is not stalled.

Failure Wait Interval How long to wait before retrying to write the next batch of stored

entries when a connection has failed. The interval can be specified in

milliseconds, seconds, minutes, hours, or days. Valid range is
between 10 milliseconds and 36 days.

Once the connection is re-established, writes are handled as
described above.

Protocol Specific Settings

AWS IoT SiteWise Settings Description

Access Key IAM created user access key with AWSIoTSiteWiseFullAccess
permission.

Secret Key IAM provided secret key.

Region Region of the AWS IoT SiteWise instance (e.g., us-east-1)

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
AWS.

Amazon Kinesis Data Streams Settings

Access Key IAM created user access key with AmazonKinesisFullAccess
permission.

Secret Key IAM provided secret key.

Region Region of the Amazon Kinesis Data Streams instance (e.g., us-east-
1)

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
Amazon.

Amazon Kinesis Data Firehose Settings

Access Key IAM created user access key with AmazonKinesisFirehoseFullAccess
permission.

Secret Key IAM provided secret key.

Region Region of the Amazon Kinesis Data Firehose instance (e.g., us-east-
1)

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
Amazon.

Apache Parquet Settings

File Directory Specifies the directory where files should be sourced for processing.

Processed File Directory Specifies the directory where files should be moved to after
processing successfully. This is only used for inputs set to Indexed.

Error Directory Specifies the directory where files should be moved to after
processing unsuccessfully. This is only used for inputs set to
Indexed.

Azure Event Hubs Settings

Connection String The primary connection string for the Event Hubs Namespace. Found
under Share access policies in the Azure Console’s Event Hubs view.

Event Hub Name The name of the event hub to publish to.

Request Timeout Maximum time to wait for a send request to respond before failing.
Valid range is 100–60000 milliseconds.

© 2021 HighByte, Inc. All rights reserved.

21

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
MQTT as a JSON object.

Azure IoT Hub Settings

Connection String The primary connection string of the IoT Hub’s IoT Device, found
under IoT devices in Azure Console’s IoT Hub configuration.

Protocol Specifies the underlying protocol to use for connectivity. Options

include AMQPS, HTTPS and MQTT.

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
MQTT as a JSON object.

CSV Settings

File Directory Specifies the directory where files should be sourced for processing.

Processed File Directory Specifies the directory where files should be moved to after
processing successfully. This is only used for inputs set to Indexed.

Error Directory Specifies the directory where files should be moved to after

processing unsuccessfully. This is only used for inputs set to
Indexed.

Google Cloud Pub/Sub Settings

Project Id The Project ID as defined in the Google Cloud Console.

Service Account JSON The Google Console Service Account Key JSON file, used to grant
access to the Service Account that has permission to publish to the
Project and Topic. Paste the contents of the key .json file directly in
this field. As an example, the file should start with

 "type": "service_account",
 "project_id": "myproject-312317",

 "private_key_id": "12345...",

InfluxDB Settings

URL Specifies the URL to connect to. This is the base URL to the InfluxDB
API.

Token Specifies the token provided by InfluxDB to authenticate the

connection. This token limits what HighByte Intelligence Hub has
access to in InfluxDB.

Organization Name The organization name in Influx. This is optional, and when left blank
the default organization for the account is used.

JDBC Settings

JDBC Connection String The full JDBC connection string required by the driver. Please consult
your driver documentation.

Class Path Class path of the JDBC driver. Please consult your driver

documentation.

Microsoft SQL Server Settings

Database Name of the database to connect to.

Username Username for authentication with the database.

Password Password for authentication with the database.

Additional JDBC Options Additional JDBC options to include in the JDBC connection string.
This is MSSQL specific. Options are entered exactly as they would be

if the JDBC connection string was created manually.

Flatten Modeled Values Enable this setting to log models with hierarchy to a SQL table. As an
example, if ModelA contained ModelB, this option would flatten the
names of ModelB attributes to ModelA_ModelB_Attribute.

MQTT Settings

Client ID The ID to send to identify the connection with the broker.

Username and Password The username and password required by the MQTT broker.

Connection Timeout Maximum time to wait for a connection to respond. Valid range is 1–
300 seconds.

Keep Alive Maximum time to wait without sending a request to the broker. Valid

range is 10–43200 seconds.

Use SSL Enable for MQTT brokers that require transport layer security. See
Appendix A for more information on MQTT security.

© 2021 HighByte, Inc. All rights reserved.

22

CA Certificate: The name of the certificate file (e.g., groupCA.pem)
imported into the certificate store.

Client Certificate: Used if the broker requires client authentication.
This is the public certificate for the client (e.g., mycert.pem).

Client Key: Used if the broker requires client authentication. This is
the private key for the client (e.g., Mycert.key.pem).

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
MQTT as a JSON object.

Model Value (JSON) Flattened Modeled Value (JSON)

{

 “Machine” : {
 “AssetInfo” : {
 “ID” : “MACH-L1-102”,

 “SN” : “B320-3R821N9-D”,
 “Date” : “2018-09-29”
 },
 “Online” : true,

 “Utilization” : 40.0
 }
}

{

 “Machine” : {
 “AssetInfo_ID” : “MACH-L1-102”,
 “AssetInfo_SN” : “B320-3R821N9-D”,

 “AssetInfo_Date” : “2018-09-29”,
 “Online” : true,
 “Utilization” : 40.0
 }

}

MySQL Settings

Database Name of the database to connect to.

Username Username for authentication with the database.

Password Password for authentication with the database.

Additional JDBC Options Additional JDBC options to include in the JDBC connection string.

This is MySQL specific. Options are entered exactly as they would be
if the JDBC connection string was created manually.

Flatten Modeled Values Enable this setting to log models with hierarchy to a SQL table. As an
example, if ModelA contained ModelB, this option would flatten the
names of ModelB attributes to ModelA_ModelB_Attribute.

OPC UA Settings

Security Level of security required by the OPC UA Sever. Valid options are
None, Basic256Sha256-Sign and Basic256Sha256-SignEncrypt. See

Appendix A for more information on OPC UA security.

Authentication Type Level of authentication required by the OPC UA Server. Valid options
are Anonymous and Username-Basic256 (requires a username and
password to be set).

Connection Timeout Maximum time to wait for a connection to be established. Valid range
is 1–60 seconds.

Request Timeout Maximum time to wait for a connection to respond. Valid range is
100–60000 milliseconds.

Flatten Modeled Values Not Applicable For OPC UA Connections

Mode Specifies how the data collection (reading input data) is performed
with the OPC Server. Valid options are Poll and Subscribe. When Poll
is set, reads will be performed on-demand. This mode ensures the
most current data is obtained based on time or flow events, but may
cause stress and the inability for the OPC UA server to optimize

communications. When Subscribe is set, the OPC UA server will
determine how best to collect the data and make it available when

data changes.

Subscription Rate Specifies the default rate that connection’s inputs should be

monitored (read) for change. An input can override this setting by
setting its sampling rate. This setting only applies when the mode is
set to Subscribe.

OSIsoft PI AF SDK Settings

Token The connection token used by the OSIsoft AF SDK Agent to
authenticate the HighByte Intelligence Hub connection.

See the Appendix for details on how to setup the OSIsoft AF SDK

Agent, which is required to connect to PI.

PostgreSQL Settings

Database Name of the database to connect to.

Username Username for authentication with the database.

© 2021 HighByte, Inc. All rights reserved.

23

Password Password for authentication with the database.

Additional JDBC Options Additional JDBC options to include in the JDBC connection string.
This is PostgreSQL specific. Options are entered exactly as they
would be if the JDBC connection string was created manually.

Flatten Modeled Values Enable this setting to log models with hierarchy to a SQL table. As an
example, if ModelA contained ModelB, this option would flatten the
names of ModelB attributes to ModelA_ModelB_Attribute.

REST Client Settings

Base URL The base URL for the request (e.g., https://myurl.com)

Authentication Type Authentication type used for REST client connection.

None: No authentication used.

Basic Auth: Set the username and password for authenticating REST

client calls.

OAUTH 2.0: Set the login Grant Type, Login URL, Scope, Audiences,

and Resources for authentication. The only Grant Type currently

supported is client credentials. With client credentials, users provide

a Username and Password.

Header Name=Value header pairs separated by &. (e.g., Content-
Type=application/json&key=123). Passed on each request.

If a value contains a ‘&’ or ‘=’ character, you must URL encode the
value (e.g., = becomes %3D).

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to a
REST output.

Sparkplug Settings

Client ID The ID to send to identify the connection with the broker.

Username and Password The username and password required by the MQTT broker.

Connection Timeout Maximum time to wait for a connection to respond. Valid range is 1–

300 seconds.

Keep Alive Maximum time to wait without sending a request to the broker. Valid
range is 10–43200 seconds.

Request Timeout (ms) Maximum time to wait for a subscription to arrive. Valid range is
100–60000 milliseconds.

Group Id The ID that provides a logical grouping of Edge of Network (EoN)
nodes.

Edge Node Id The ID that uniquely identifiers an EoN node.

Use SSL Enable for MQTT brokers that require transport layer security. See

Appendix A for more information on MQTT security.

CA Certificate: The name of the certificate file (e.g., groupCA.pem)
imported into the certificate store.

Client Certificate: Used if the broker requires client authentication.
This is the public certificate for the client (e.g., mycert.pem).

Client Key: Used if the broker requires client authentication. This is

the private key for the client (e.g., Mycert.key.pem).

Flatten Modeled Values Specifies if modeled values should be flattened before publishing to
Sparkplug as a list of metrics.

Model Value (Metrics) Flattened Modeled Value (Metrics)

“Machine\AssetInfo\ID” : “MACH-L1-102”
“Machine\AssetInfo\SN” : “B320-3R82-D”
“Machine\AssetInfo\Date” : “2018-09-29”

“Machine\Online” : true,
“Machine\Utilization” : 40.0

“Machine\AssetInfo_ID” : “MACH-L1-102”
“Machine\AssetInfo_SN” : “B320-3R82-D”
“Machine\AssetInfo_Date” : “2018-09-29”

“Machine\Online” : true,
“Machine\Utilization” : 40.0

Webhook Settings

No protocol specific settings

© 2021 HighByte, Inc. All rights reserved.

24

4.2.2 Create an Input

An input represents a path to a data point contained in a connection that can be read.

A. Under Connections, find the Connection, click the drop-down menu, and click the Inputs menu

item. See Figure 20.

Figure 20

B. Depending on the type of connection you may be able to Browse for inputs or Import one or

more inputs in JSON format. See Figure 21.

Figure 21

Click the Browse button to View and Select the desired inputs. When finished click the Import

Selected button. See Figure 22.

© 2021 HighByte, Inc. All rights reserved.

25

Figure 22

Click the JSON Import button to manually create one or more inputs using JSON. This is

currently only supported for OPC UA. A sample is provided to the right of the import field.

When finished click the Import button to add the inputs. See Figure 23.

Figure 23

C. Alternatively, you can click the Create Input to manually add an input. See Figure 24.

© 2021 HighByte, Inc. All rights reserved.

26

Figure 24

Set any General and Protocol Specific Settings. Click Submit to add the input and return to the

input list. General and Protocol Specific Settings are described below.

General Settings

General Description

Name Specifies the name of the input. The name must be unique across all
inputs for the specified connection.

Names can only contain alphanumeric and underscore characters
(e.g., A-Z, a-z, 0-9 or _).

Cache When enabled, specifies how long the input’s value should be cached
and reused internally after a successful read from the underlying

connection. Once the cached value’s lifetime expires, the cache is
invalidated and a new read is issued to the underlying connection.

The lifetime interval can be specified in milliseconds, seconds,
minutes, hours, or days. Valid range is between 10 milliseconds and
36 days.

Note: The cached value and its lifetime is persisted to disk and will
be used across product runs until the value expires.

Protocol Specific Settings

AWS IoT SiteWise Settings Description

Inputs are not currently supported

Amazon Kinesis Data Streams Settings

Inputs are not currently supported

Amazon Kinesis Data Firehose Settings

Inputs are not currently supported

Azure Event Hubs Settings

Inputs are not currently supported

Azure IoT Hub Settings

Inputs are not currently supported

© 2021 HighByte, Inc. All rights reserved.

27

CSV Settings

CSV File Name The file name to read. This can be the full name of a single file or a
regular expression. As an example, (.*).csv would match the first
.csv file in the directory based on alphabetical order.

Skip Lines How many lines to skip from the front of the file. Use this setting to
skip header lines or other data that is not required.

Max Rows The max number of rows in the file. Leave this blank if you just want

to read to the end of the file. Set this if you only want to read up to
N rows.

Max Rows Per Read The max number of rows to return from a single read. As an
example, if there are 1000 rows and this is set to 10, only 10 rows
would be read at a time. When Index File is on, the first read will be
records 0 to 9, second read will be 10 to 19, etc.

Replacement Headers Delimited separated list of headers used to replace the file headers,
or provide headers (e.g., header1, header2, header3).

Note: There must be a header for each column of data.

Delimiter Specifies the delimiter used to separate headers and fields. The
default delimiter is a comma. Only single character delimiters are
supported.

Index File When enabled, the file is moved to the connection’s processed
directory after being read.

Google Cloud Pub/Sub Settings

Inputs are not currently supported

InfluxDB Settings

Flux Query

The Flux query string used to query InfluxDB. See the InfluxDB

documentation on supported query strings and syntax.

https://docs.influxdata.com/influxdb/v1.8/guides/query_data/

Data is returned in CSV format, and this data is available in HighByte
Intelligence Hub as an array of rows.

MQTT Settings

Topic Specifies a string that is used to subscribed to specific MQTT
messages.

Include Topic

Specifies if the MQTT topic should be included in the read data. When
enabled the reads look as follows, where the payload is inserted
under value, and the topic is included at the root.

{

 "_topic": "deviceid",
 "value": {
 “deviceid": "press1",
 "other": 10
 }
}

OPC UA Settings

Namespace Index Numeric index of the namespace the identifier belongs to.

Identifier Type Specifies the type of data used in the identifier field. This can be set

to String or Numeric.

This is not the data type of the value associated with this OPC UA
input.

Identifier Specifies the identifier used to reference the OPC UA input.

Sampling Interval Specifies the rate that the input should be monitored (read) for
change. By default, this value is zero, which uses the subscription
rate set on the connection. Set this value to something slower than
the connection’s subscription rate to sample less frequently (down

sample). Setting this value to something faster than the connection’s

subscription rate will be clamped to the subscription rate (over
sampling is not supported).

OSIsoft PI AF SDK Settings

https://docs.influxdata.com/influxdb/v1.8/guides/query_data/

© 2021 HighByte, Inc. All rights reserved.

28

Type Specifies the type of data to read. Options include assets, event
frames, and points.

Database Specifies the PI AF database to query. This field is required for asset
and event frame reads.

Query Used for Event Frames and Assets. For Assets, this is the Asset
search syntax supported by PI. Examples are provided below.

Get the Boiler1 under PlantB\Boilers

 Parent:PlantB\Boilers Name:Boiler1

Get all elements with a template type of Boiler
 Template:Boiler

See the OSIsoft documentation or PI Explorer for supported syntax.

For Event Frames, this represents the query syntax supported by PI
Explorer.

Get all event frames

 *

Get all event frames that start with the name boiler
 name:Boiler*

Points Used for point reads only. A list of all the points to read.

Get Used for point reads only. Specifies the type of data to get for the

point.

Options include current value, raw values, interpolated, and
summary queries.

Start Time Used for point reads only. Specifies the start time for the query. .
This uses the standard PI time syntax. Relative and absolute times
are supported (ex. *-1h). Absolute times must include a “ Z” at the
end to be treated as UTC.

End Time Used for point reads only. Specifies the end time for the query. The

supported formats are the same as Start Time.

Boundary Type Used for point reads of raw values only. Options include inside,
outside, or interpolated.

Interval Used for point reads of type summary or interpolated. Specifies the
interval to interpret data samples. For example, 5m, means every 5
minutes. Use this setting to break reads into chunks. As an example,
get the average value of a point every 5 minutes over a 1-hour
period When left blank the interval defaults to the time range
between Start and End Time.

Calculation Basis Used for point reads of summary types only (ex. average). Options
include time weighted or event weighted.

Index Used for point reads only. When enabled, reads are performed from
the Start to the End Time, in window intervals. After each successful
read, the last read index is updated and stored to disk, so that in the
case of a system restart, the reads will start from where they last
ended. Indexing is useful when querying a large amount of historical
data.

Index Window Used when indexing is enabled. This is the window size to read on

each read request. As an example, with the following settings each
read will gather one days' worth of data in 5 minute intervals and
reads will stop after the full 100 days is read.

Start Time = *-100d
End Time = *
Interval = 5m
Index = true
Window Size = 1d

Apache Parquet Settings

© 2021 HighByte, Inc. All rights reserved.

29

Parquet File Name The file name to read. This can be the full name of a single file or a
regular expression. As an example, (.*).parquet would match the
first .csv file in the directory based on alphabetical order.

Max Rows Per Read The max number of rows in the file. Leave this blank if you just want
to read to the end of the file. Set this if you only want to read up to
N rows.

Index File When enabled, the file is moved to the connection’s processed
directory after being read.

SQL (JDBC, MSSQL, MySQL, PostgreSQL) Settings

Query The full SQL query, which can include any SQL syntax including
stored procedures. Additionally, the query can reference any
connections’ inputs’ values by including the qualified
@ConnectionName$InputName (e.g., SELECT * FROM AssetTable
WHERE [id] = @OPC$LastAssetId).

Click the Object Explorer button to validate the connection settings

and discover Tables and Views to perform a query on.

Click the Execute button to validate the query. A subset of the
results will be displayed.

Index This setting is used to index the SQL query and only get new data,
either by time or by an index, on each query.

When enabled, specifies an index Name and default Value to
reference within a query. This name / value pair is cached across

successive product runs and allows the next query to pick up where
it left off.

Note the Name must be the column name in the table that is being
used for indexing.
An example query might be SELECT * FROM SimpleMachineX WHERE
[id] > :idIndex

By enabling indexing and specifying the Name as idIndex and Value

as zero, the first time the query is run :idIndex is set to zero and
after the query :idIndex is updated to the latest value from [id]. The
latest value is cached to disk. Successive queries will use the latest

value cached and then update the cached value on success.

To reset the index, change the index Value and save the input. The
next query will start with this Value.

Note that test reads on the input done from the UI will use the
current index Value but will not update the index Value.

REST Client Settings

Endpoint URL The endpoint to send the request to (e.g., /routes/myendpoint).

Note the URL can reference data from other inputs using the

@connection$input.attribute syntax. Other inputs are read first and
the string value of the returned field is inserted into the URL before

reading this input. As an example
/my/url/@connection$input.attribute will result a call to /my/url/123
at runtime.

Use the References panel on the left to explore and drag-and-drop
references to other inputs.

Content Type The content type of the incoming request: JSON or XML.

Method The method to use: GET or POST.

Header Name=Value header pairs separated by & (e.g., Content-

Type=application/json&key=123). Passed on each request. These
are added to the connection level header.

This field supports dynamic inputs.

© 2021 HighByte, Inc. All rights reserved.

30

Body The body of the request. Used with the POST method only. This can
be any text including JSON.

Like the Endpoint URL, this field can also referene data from other
inputs using the @connection$input.attribute syntax.

Sparkplug Settings

Device Id The id for the attached device the metric belongs to. Do not set the
device id if the metric belongs to the EoN.

Metric Name The metric name(s) to read. Examples include: MetricA,
Folder/MetricA, #, #/AssetInfo/#

Note: # is an MQTT wildcard character. When used, multiple metrics
will be read and attached to a single input. This input will be treated
as a complex data object that can be used as an input into a flow or
attached to a modeled instance’s attribute of type Any.

Webhook Settings

Filter Filters incoming payloads using user defined syntax. Filter syntax is

written in the form of filter1=value1&&filter2=value2. Each filter is

separated by &&.

{
 “Machine” : {
 “AssetInfo” : {

 “ID” : “MACH-L1-102”,
 “SN” : “B320-3R821N9-D”,
 “Date” : “2018-09-29”
 },

 “Online” : true,
 “Utilization” : 40.0
 }

}

Filter example for payload above:
Machine.Online=true&&Machine.AssetInfo.ID=MACH-L1-102

Note: The full path of each filter must be given every time.

4.2.3 Create an Output

An output represents a path to a data point contained in a connection that can be written to.

A. Under Connections, find the Connection, click the drop-down menu, and click the Outputs

menu item. See Figure 25.

© 2021 HighByte, Inc. All rights reserved.

31

Figure 25

B. Depending on the type of connection (e.g., OPC UA TCP) you may be able to Browse for

outputs. Follow the same steps described in Creating an Input to View, Select, and Import

Selected Items.

C. Alternatively, you can click the Create Output to manually add an output. See Figure 26.

Figure 26

Set any General and Protocol Specific Settings. Click Submit to add the output and return to

the output list. Protocol and General Specific Settings are described below.

General Settings

General Description

Name Specifies the name of the output. The name must be unique across
all outputs for the specified connection.

Names can only contain alphanumeric and underscore characters

(e.g., A-Z, a-z, 0-9 or _).

Protocol Specific Settings

© 2021 HighByte, Inc. All rights reserved.

32

AWS IoT SiteWise Settings Description

No output protocol specific settings are required

Amazon Kinesis Data Streams Settings

Data Stream The name of data stream to write to.

Partition Key

An optional field to specify a partition key for the data stream.
Outputs with a specified partition key will all write to the same shard.
If no partition key is given, the output will disperse requests among

all existing shards for the data stream.

Amazon Kinesis Firehose Settings

Delivery Stream The name of the delivery stream to write to.

Azure Event Hubs Settings

No output protocol specific settings are required

Azure IoT Hub Settings

No output protocol specific settings are required

CSV Settings

Filename
Specifies the name of the file to write to. This includes the file
extension and directories. The file path can include dynamic outputs

(e.g., /{@connection$input.site}/file.csv)

Delimiter The delimiter to use in the output file. By default, this is a comma.

Create
When enabled, the file and directory structure are created if they do
not exist. If they do exist, data is appeneded to the end of the file.

Google Cloud Pub/Sub Settings

Topic
The Topic ID as defined in the Google Cloud Pub/Sub configuration.
This is the topic the output will publish data to.

InfluxDB Settings

Bucket
Specifies the the InfluxDB bucket to write data to. This bucket must
exist in InfluxDB and be accessible by the connection token.

Tags

The tags associated with the data written to InfluxDB. Tags are a
way to organize data in InfluxDB. Each tag is placed on a newline. As
an example, tags can be used with dynamic outputs to organize data

in an ISA-95 structure.

site={@this.site}
area={@this.area}

Leave this blank if no tags are required.

MQTT Settings

Topic

Specifies a string that is used to publish MQTT messages.

Topics can be static or dynamic. Dynamic topics can include data
from the output payload.

To include the source input or instance name, use a # character. As
an example. /mytopic/# will convert to /mytopic/modelname or
/mytopic/opctagname at runtime.

To include data from the payload use the following syntax.

/mytopic/{@this.siteid}

At runtime this takes the siteid attribute of the output payload and
includes it in the output topic. One or more dynamic outputs can be
defined.

ex. /mytopic/{@this.siteid}/{@this.assetid}

When using dynamic outputs, if the output payload does not contain
the referenced attribute the output will fail to write.

QoS Specifies the quality of service associated with publishing the output.

mailto:site=%7b@this.site%7d
mailto:area=%7b@this.area%7d
mailto:%7b@this.siteid
mailto:/mytopic/%7b@this.siteid%7d/%7b@this.assetid%7d

© 2021 HighByte, Inc. All rights reserved.

33

Named Root Specifies how the instance name should show up in the resulting
output value.

When enabled, output values will take the form:

 “InstanceName” : {
 …
 }

When disabled, output values will take the form:

 {
 “_name” : “InstanceName”
 …
 }

Retain Specifies whether the MQTT Broker should cache the last value sent.

Breakup Arrays

When true, if the data being sent out is an array type (e.g., an array

of SQL rows), this option will send out each element of the array
individually. Otherwise the entrie array is sent in one publish.

This is useful when used in conjunction with dynamic topics. Each
element of the array can be published on a unique topic given data
in the payload.

OPC UA Settings

Namespace Numeric index of the namespace the identifier belongs to.

Identifier Type Specifies the type of data used in the identifier field. This can be set
to String or Numeric.

This is not the data type of the value associated with this OPC UA
output.

Identifier Specifies the identifier used to reference the OPC UA output.

 Numeric index of the namespace the identifier belongs to.

OSIsoft PI AF SDK Settings

Type Specifies the type of write; options include asset and points.

Point writes write data as PI points. Arrays and simple types are not
supported. Hierarchy is flattened using the parent.child.attribute
syntax. All points created in PI have a source type set to HB.

Asset writes data as PI points, and then builds the templates and
element hierarchy inside of PI’s Asset Framework.

Database Used for asset writes only. Specifies the AF database to write to.

Path For asset writes, this specifies the root element in the tree to write
to. For example, MyData\\DataHere would add elements as children
to DataHere.

For point writes, this is a string to prepend to the PI point name.

Asset Name Used for asset writes only. This overrides the element name assigned
to elements. By default, when left blank, the element name is equal
to the instance or input name in HighByte Intelligence Hub.

This setting supports dynamic outputs, allowing elements to be
named based on data from the output payload (e.g.,
{@this.assetid})

Point Name Used for point writes only to override the instance or input name

portion of the point name. As an example, if the point name is

parent.child.attribute, a point name of ‘test’ would change it to

test.child.attribute. Dynamic outputs are supported.

Timestamp Provides a way to set the timestamp of the write. By default, when
left blank, the timestamp is set to the time of the write.

This setting is used to pull the timestamp from the payload using
dynamic addressing. As an example, if the payload has a

mytimestamp attribute, setting this to {@this.mytimestamp} will set
the write time to the value of mytimestamp. The attribute must be in
ISO8601 format.

mailto:%7b@this.mytimestamp

© 2021 HighByte, Inc. All rights reserved.

34

Apache Parquet Settings

Outputs are not currently supported

SQL (JDBC, MSSQL, MySQL, PostgreSQL) Settings

Table The name of the SQL table to write to. The table must already exist

and have column names that match the model attribute names.

Table names containing capital letters must be placed inside quotes
(e.g., “MyTable”).

Write Type Writes to the table can be Inserts, Updates, or Upserts.

Inserts add the output data as new rows to the table.

Updates update existing rows that have a matching value of the

attribute referenced in the Where Column. If there are no matches
Update does nothing.

Upsert performs an Update if there are matching rows, and if there
are no matching rows it performs an Insert.

Where Column The name of the attribute/column in the output data that’s used to
match existing rows in the table. This setting is used if the Write
Type is Update or Insert. As an example, assume this is set to
‘batchId’. The output will take the value of batchId in the output

payload, and update all rows in the table whos batchId column
matches the batchId value.

Log as JSON Specifies whether modeled values should be serialized as a single-
column JSON blob versus expanding to multiple columns.

Create Table Specifies whether a table should automatically be created if it does
not exist.

REST Client Settings

Endpoint URL The endpoint to send the request to (e.g., /routes/myendpoint).

Header Name=Value header pairs separated by &. (e.g., Content-
Type=application/json&key=123). Passed on each request. These
are added to the connection level header.

HTTP Method The method to use: POST or PUT.

Template If blank, the default JSON output format is used. Otherwise, the
format of the output can be modifed using this Apache Freemarker
template engine. See Appendix C for more details.

Sparkplug Settings

Device Id The id for the attached device the metric belongs to. Do not set the
device id if the metric belongs to the EoN.

This field supports dynamic oututs.

Metric Name Optionally specify the metric name to write. Examples include:
MetricA, Folder/MetricA

If you do not set a metric name, the metric name will be auto
generated from the input or model instance name. This allows you to

route many inputs and/or instances to a single output and simplifies
configuration.

This field supports dynamic outputs.

Breakup Arrays When true, if the data being sent out is an array type (ex. an array

of SQL rows), this option will send out each element of the array
individually. Otherwise the entrie array is sent in one publish.

This is useful when used in conjunction with dynamic device id or

metric names. Each element of the array can be published on a

unique device or metric given data in the payload.

Webhook Settings

Outputs are not currently supported

© 2021 HighByte, Inc. All rights reserved.

35

4.2.4 Create a Flow for a Single Input / Output

A flow defines a mapping of data coming in and data going out of the product. A flow’s sources can be

one or more simple Inputs and/or modeled Instances, while its targets are one or more Outputs.

A. Click Flows in the configuration’s Main Menu and then click the Create Flow button. See Figure

27.

Figure 27

B. Enter a Name to represent the flow. Optionally enter in a Description or a Group As folder to

categorize the flow. Click Next to continue. See Figure 28.

Figure 28

C. To add one or more Sources, use the References panel to view and select Inputs for any

Connection and/or Instances and drag them to the Sources field. To add one or more Targets,

© 2021 HighByte, Inc. All rights reserved.

36

use the References panel to view and select Outputs for any Connection and drag them to the

Targets field. Click Next to continue. See Figure 29.

Figure 29

D. Set the additional flow settings described below. Click the Submit button when finished. See

Figure 30.

Figure 30

Setting Description

Interval Specifies how often the flow should be processed. The interval can be specified in
milliseconds, seconds, minutes, hours, or days. Valid range is between 10 milliseconds and
36 days.

Mode Specifies the flow’s mode of operation.

© 2021 HighByte, Inc. All rights reserved.

37

Always
Every interval the source will be read and made available to write to
the target.

OnChange

On the first interval, the expression will be evaluated, the result will
be stored, and the source will be read and made available to write to
the target.

On successive intervals, the expression will be evaluated. If the

result differs from the previous interval, the result will be stored,
and the source will be read and made available to write to the
target. Otherwise, no action is taken.

OnTrue

On the first interval, the expression will be evaluated. If the result
evaluates to True, the source will be read and made available to
write to the target. Otherwise, no action is taken.

On successive intervals, the expression will be evaluated. If the
result evaluates to True, and on the previous interval the expression
evaluated to False, the source will be read and made available to

write to the target. Otherwise, no action is taken.

WhileTrue

Every interval the expression will be evaluated. If the result

evaluates to True, the source will be read and made available to
write to the target. Otherwise, no action is taken.

Expression Depending on the mode, a JavaScript expression that assigns a simple input or performs a
calculation on one or more inputs. This field is not applicable for all modes. See Appendix B
for more information on Expressions.

Note: The special value of internal$lastExpressionValue can be used in flow expressions to
perform deadband calculations. Internal$lastExpressionValue evaluates to the value returned

by the last execution of the expression. Here is an example of how to perform deadband
calculations on an input, where connection$input is the input, and the deadband is 0.1:

(Math.abs(connection$input – internal$lastExpressionValue) > 0.1) ? connection$input :
internal$lastExpressionValue

Publish Mode Specifies which source values to publish to the target.

All
Publish all successfully read source values at each
interval.

OnlyChanges
Publish successfully read source values that have
changed from the previous interval. For modeled
instances all attribute values are published.

OnlyChangesCompressed

Publish successfully read source values that have
changed from the previous interval. For modeled

instances only the attribute values that changed are
published.

Enabled The enabled state of the flow. When disabled, sources are not read, and nothing is written to
the target.

4.2.5 Create a Model

Models are a standard representation of logical assets, processes, products, systems, or roles. A model

is comprised of a collection of attributes that are common to the logical item and forms the basis for

standardizing data across a wide range of raw input data.

Models are leveraged through the creation of a model Instance, each of which are unique to a specific

instance of an asset, process, product, system, or role.

A. Click Modeling in the configuration’s Main Menu, click the Models tab, and then click the Create

Model button. See Figure 31.

© 2021 HighByte, Inc. All rights reserved.

38

Figure 31

B. Enter a Name to represent the model. Optionally enter in a Description and a Group As folder

to categorize the model. Click Next to continue. See Figure 32.

Figure 32

C. Click the New Attribute and set the attribute’s Name, Type, and Required fields. Continue to

add additional attributes that should be assigned to this model and click the Submit button

when finished. See Figure 33.

© 2021 HighByte, Inc. All rights reserved.

39

Figure 33

Attribute Setting Description

Name The name for the attribute to be included in the model.

Type The type of value that will be assigned to the attribute. The type can be a primitive type, a
reference to another model or the Any type.

Primitive types include Boolean, String, Int8, Int16, Int32, Int64, Real32 and Real64 (where
8, 16, 32 and 64 indicate the number of bits in the Integer or Real value).

Reference a model within a model to develop complex models and reuse previous work.
When referencing a model select an existing model or create a new model inline.

Specifying Any will take on the type of the value assigned to the attribute, including modeled
or complex data.

Array Specifies if the attribute is array of values of the specified type.

Required Specifies if an instance of this model must populate the attribute.

4.2.6 Create a Modeled Instance

Whereas a Model specifies the standardization of an asset, process, product, system or role, a model

Instance represents a real-time representation of one of these items. For example, a Model may be

created to represent how a Quality Manager’s view of a manufacturing line will be standardized. If there

are 10 manufacturing lines, 10 modeled instances would be created and populated with data to represent

each one.

A. Click Modeling in the configuration’s Main Menu, click the Instances tab, and then click the

Create Instance button. See Figure 34.

© 2021 HighByte, Inc. All rights reserved.

40

Figure 34

B. Enter a Name to represent the instance. Optionally enter in a Description and a Group As

folder to categorize the instance. Set the model Instance Mode. When in Array mode the

instance expands an array input, producing an array of transformed outputs. The is commonly

used when transforming SQL rows through a model. Each row is applied to the instance and

the output is an array of the transformed outputs. When in Object mode, only a single

instance is output Click Next to continue. See Figure 35.

Figure 35

C. Select the Model. This will automatically pre-populate the attributes to be assigned to this

instance. Click Next to continue. See Figure 36.

© 2021 HighByte, Inc. All rights reserved.

41

Figure 36

D. Set an expression and/or default for each attribute. Use the References panel to find and

select Inputs of interest and drag them into any expression. Click the Submit button when

finished. See Figure 37.

Figure 37

See Appendix B for more information on Expressions and Default Values.

4.2.7 Create a Flow with a Modeled Instance

© 2021 HighByte, Inc. All rights reserved.

42

1. Follow the same steps as in Create a Flow for a Simple Input / Output, only add one or more

instances as a source.

4.3 Event Log and Troubleshooting

The Event Log is available via the main menu under Log and contains the runtime and audit log

messages generated by the selected hub. The log is primarily used for troubleshooting connection and

flow errors. See Figure 38.

Figure 38

Each log message includes the time (localized), the event level (e.g., info, warning, error, fatal, or

audit), the source (the Runtime or a Connector), and the message that can be used for

troubleshooting.

The log can easily be searched by the Level, Source, or a general filter that looks at the message

body.

© 2021 HighByte, Inc. All rights reserved.

43

5.0 Central Configuration

The Intelligence Hub supports the ability for any hub to act as a central hub, allowing for the central

hub to act as a single interface for configuring multiple remote hubs. This is useful when a single

facility has many Intelligence Hub instances running closer to the machines or in cases where it is

easier to manage many Intelligence Hubs centrally, either by application or facility.

5.1 Enable Central Configuration

To enable central configuration mode for a specific Intelligence Hub instance, edit the ‘intelligencehub-

settings.json’ file in the runtime directory, and set the centralConfig property to true.

{

 "settings": {

 "configuration": {

 "scheme": "http",

 "port": 45245,

 "centralConfig": true

 }

 }

}

Restart the Intelligence Hub runtime for this change to take effect. Once restarted, refresh the

browser and connect to the Intelligence Hub instance that is configured for central management. A

new Network tab is now available. See Figure 39.

Figure 39

5.2 Create a Network Group

A network group represents a group of remote hubs and contains the credentials a remote hub needs

to connect to the central hub. To create a network group, perform the following steps. See Figure 40.

A. Click Network and select the Hubs tab to list all Network Groups previously configured.

B. Click the Create Network Group button to create a new group.

C. Enter a Name for the group and an optional description.

D. Click the Save button for the change to take effect.

E. A Token will be automatically created for the Network Group. This Token will be required by a

corresponding remote Intelligence Hub for authentication with this central hub.

© 2021 HighByte, Inc. All rights reserved.

44

Figure 40

5.3 Connect a Remote Hub

Once a Network Group is created, perform the following steps to connect a remote hub to the central

hub.

The remote hub connects to the central hub’s REST API (default port

45245) using websockets. The central hub needs to expose a

websockets port to allow remote hubs to connect.

A. Install the Intelligence Hub runtime component on another machine. Only the runtime is

required, but you may optionally install the configuration component to allow for direct

configuration if desired. See section Intelligence Hub Runtime Installation above.

B. Create a new intelligencehub-remoteconfig.json file in the runtime directory. Define the file as

follows. An intelligencehub-remoteconfig.json.template file is provided in the runtime directory

as a starting point.

{

 "remoteUrl" : "ws://hostname:45245/websocket",

 "token": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

}

• remoteUrl is the URL to the central host’s REST API. By default, this is port 45245 and

uses web sockets (ws) over http.

Note: HighByte recommends the use of HTTPS for accessing the REST API for secure

websocket communications.

© 2021 HighByte, Inc. All rights reserved.

45

• token is the token automatically generated when creating a Network Group on the central

hub and is used to authenticate the remote hub.

C. Save this file and restart the runtime for this remote hub installation. The remote hub will

connect to the central host.

Upon successfully connecting, the following event message will be emitted: “Remote

configuration connected to ws://hostname:45245/websocket”.

5.4 Rename the Remote Hub

By default, the remote hub connects to the central hub and uses its machine name as an identifier.

This identifier can be changed by performing the following steps. See Figure 41.

A. Click Network and select the Hubs tab to list all Network Groups previously configured.

B. Select the corresponding Network Group in the list and View its Details.

C. Click Hubs to list all currently connected Hubs.

D. Rename the hub and click Save.

The hub’s Connected State and its Client ID is also displayed. The

Client ID is automatically assigned to the remote hub when it first

connects. On future connections, the remote hub provides the Client

ID to identify the hub.

Figure 41

5.5 Remotely Configure the Hub

To configure the connected remote hub, perform the following steps. See Figure 42.

© 2021 HighByte, Inc. All rights reserved.

46

A. Click Host from the main menu.

B. Select the remote hub to configure in the Change Hubs dialog and click Update.

C. All configuration changes will now be proxied to the remote hub. When finished, select another

remote hub to configure or click Host to work with the central hub.

Figure 42

5.6 Compare Two Hubs

Using the central host, compare the configuration of any two hubs by performing the following steps.

See Figure 43.

A. Click Network and select the Compare tab.

B. The Source hub is the current hub being configured. Change the source by using the Change

Hubs dialog.

C. The Target is the hub being compared to.

D. Compare the Entire Project (On) or Specific Objects (Off) between the two hubs. When

comparing specific objects (e.g., Connections and Models), use the References panel to drag

and drop which objects should be compared.

E. Click Compare.

F. The Results show the results of the comparison, including objects that are different or missing.

Expand each element to see what is different between two objects.

© 2021 HighByte, Inc. All rights reserved.

47

Figure 43

5.7 Sync Objects Between Hubs

Using the central host, synchronize connections, certificates, models, or entire projects between two

hubs. To synchronize objects, perform the following steps. See Figure 44.

A. Click Network and select the Sync tab.

B. The Source hub is the current hub you are configuring. Change the source by using the

Change Hubs dialog.

C. The Target is the hub being synchronized.

D. Use the References panel to drag and drop the Connections and Models to synchronize.

E. Click Sync.

F. The Results show whether synchronization succeeded for each object.

Synchronization cannot be rolled back or reverted and partial success

is possible if some objects fail to synchronize.

© 2021 HighByte, Inc. All rights reserved.

48

Figure 44

© 2021 HighByte, Inc. All rights reserved.

49

Appendix A – Security

Storing Secure Information

Passwords and other secure information are encrypted and stored in the intelligencehub-

configuration.json file. In order to move this configuration between Intelligence Hub instances, the

intelligencehub-certificatestore.pkcs12 and intelligencehub-configuration.json must both be moved to

the new location.

AWS Token Security

AWS IoT SiteWise

The AWS IoT SiteWise connector uses the AWS SDK to communicate to IoT SiteWise, which is REST

based. The Access Key and Secret Key must be acquired for an IAM user that is in a group with access

to the AWS IoT SiteWise API. This permission in AWS is called ‘AWSIoTSiteWiseFullAccess’. This role is

used to publish models, assets, and data to IoT SiteWise.

Amazon Kinesis Data Streams

The Amazon Kinesis Data Streams connector uses the AWS SDK to communicate to Amazon Kinesis

Data Streams, which is REST based. The Access Key and Secret Key must be acquired for an IAM user

that is in a group with access to the Amazon Kinesis Data Streams API. This permission in AWS is

called ‘AmazonKinesisFullAccess’. This role is used to publish data to Amazon Kinesis Data Streams.

Amazon Kinesis Data Firehose

The Amazon Kinesis Firehose connector uses the AWS SDK to communicate to Amazon Kinesis Data

Firehose, which is REST based. The Access Key and Secret Key must be acquired for an IAM user that

is in a group with access to the Amazon Kinesis Data Firehose API. This permission in AWS is called

‘AmazonKinesisFirehoseFullAccess’. This role is used to publish data to Amazon Kinesis Data Firehose.

IAM Best Practices

Please see AWS documentation on IAM best practices. HighByte strongly recommends following the

policy of least privilege when granting the IAM role for the connection.

• https://docs.aws.amazon.com/iot-sitewise/latest/userguide/security-iam.html

• https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html

It is also recommended that users occasionally rotate new IAM credentials and manually update the

Intelligence Hub’s configuration with the new credentials.

Azure IoT Hub & Azure Event Hubs

Connection String

Azure IoT Hub and Azure Event Hubs support security via their connection string. The communications

are secured by MQTT/TLS, HTTPS, or AMQP for the IoT Hub and AMQP for the Event Hubs.

Microsoft SQL Server, MySQL, PostgreSQL

Username / Password

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/security-iam.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html

© 2021 HighByte, Inc. All rights reserved.

50

The Intelligence Hub supports username and password security for all SQL connections. The password

is encrypted and sent to the database via the JDBC driver implementation. The username and password

can be included as part of the Additional Properties of the JDBC connection string, but it is strongly

recommended that the user use the specific username and password fields as these are encrypted by

the Intelligence Hub before storing them in the project configuration file.

MQTT Security

SSL

The Intelligence Hub supports the ability to protect the contents of MQTT messages communicated with

an MQTT broker by leveraging the transport level security mechanisms supported by TCP/IP and adopted

by the MQTT specification. Consult your MQTT broker documentation on how to require SSL for secure

connectivity.

When using SSL, specifically with AWS IoT Core, AWS IoT Greengrass, or any broker that has a self-

signed certificate, you will need to import the certificate into the HighByte Intelligence Hub certificate

store. See the “Managing Certificates” section on how to import the certificates. You will need to import

the self-signed CA certificate. You may also need to add the Client Certificate (as a certificate) and Client

Key (as a key) if the broker is using certificate-based authentication.

Note: HighByte recommends the use of SSL for MQTT communications.

Username/Password

The Intelligence Hub supports the ability to set a username and password to be passed to the MQTT

broker as part of its authentication process. Consult your MQTT broker documentation on how to require

username/password authentication.

Note: Per the MQTT specification, the username and password are only protected when sent over the

wire if used in conjunction with SSL. Caution should be exercised when using a username and password

with SSL disabled.

OPC UA Security

Security Policy: Basic256Sha256 Sign | SignEncrypt

The Intelligence Hub supports the Basic256Sha256-Sign and Basic256Sha256-SignEncrypt security

policies defined by the OPC UA specification.

To simplify the configuration and use of these security policies, the Intelligence Hub behaves as follows:

1. Automatically creates an application instance certificate the first time it is run.

2. Connects to servers using asymmetric security algorithms encryption to securely exchange

public keys and create a secure connection.

3. Signs or Signs and Encrypts all requests before sending it to the server.

4. Decrypts (if applicable) and verifies the signature of all responses coming from the server.

The first time the Intelligence Hub makes a secure connection to any

OPC UA server, you will need to Trust the Intelligence Hub application
certificate where the server is installed. Consult your OPC UA server

documentation for instructions.

© 2021 HighByte, Inc. All rights reserved.

51

The Intelligence Hub will continually try to establish a secure connection until its certificate is trusted or

it is shutdown. There is no need to restart the Intelligence Hub for these changes to take effect.

Security Policy: None

The Intelligence Hub supports the ability to turn off security as allowed by the OPC UA specification. In

this mode, communications will not be encrypted nor signed, and as such will not be private and not be

verified as coming from a trusted source.

Authentication: Username/Password

The Intelligence Hub allows connections to the OPC UA server with specific username and password

credentials. Passwords are always encrypted using Basic256 encryption defined by the OPC UA

specification. Consult your OPC UA server documentation for instructions on how to setup

username/password authentication.

Authentication: Anonymous

The Intelligence Hub allows connections to the OPC UA server as an anonymous user. Consult your OPC

UA server documentation for instructions on how to allow anonymous users.

Note: HighByte recommends using a minimum of Basic256Sha256–Sign along with username/password

authentication for all OPC UA communications.

REST Client

Username/Password

The REST Client supports username and password Basic Authentication. Note if the endpoint URL is

HTTPS the credentials are encrypted, but with HTTP they will be sent as plain text.

Token

The REST Client also supports token-based authentication, where the token is added to the Input/Output

URL as a params (i.e., /endpoint?token=123) or the token is added to the Header (i.e., content-

type=json&token=123).

© 2021 HighByte, Inc. All rights reserved.

52

External Identity Provider Setup

The Intelligence Hub supports the ability for users to utilize an external identity provider for

authorization and authentication of the Intelligence Hub. The setup of the external identity provider is

handled in the intelligencehub-settings.json file.

Note: The Intelligence Hub only supports authorization and authentication with external identity

providers when self-hosting the Intelligence Hub. If you are using third-party hosting to host the

configuration, you will not be able to login using an external identity provider. With third-party

hosting, only the internal identity provider is supported.

SAML 2.0 Settings

To setup SAML 2.0, create a saml2 object inside the authentication object in the settings file. Once all

SAML 2.0 settings are specified, add “saml2” to the providers array in authentication.

Settings Description

sp.nameidformat Specifies the name identifier used to represent the requested subject.

Supported NameIdFormats:
urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress,
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName,
urn:oasis:names:tc:SAML:1.1:nameidformat:WindowsDomainQualifiedName,
urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified,

urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos,
urn:oasis:names:tc:SAML:2.0:nameid-format:entity,

urn:oasis:names:tc:SAML:2.0:nameid-format:transient,
urn:oasis:names:tc:SAML:2.0:nameid-format:persistent,
urn:oasis:names:tc:SAML:2.0:nameid-format:encrypted

sp.entityid Specifies the identifier of the Intelligence Hub entity.

sp.assertion_consumer_service.url Specifies where the SAML assertion gets sent to. Depending on where the
Intelligence Hub is hosted, the URL for this will look like:
http(s)://host:port/config/login.

Note: When self-hosting, ensure the http(s)://host:port in the
configuration/config/settings.json URL matches the http(s)://host:port in

the sp.assertion_consumer_service.url.

sp.privatekey The name of the private key used to sign SAML messages. The private key should
also be stored under this name in the Intelligence Hub KeyStore. This field should
only be used when the AuthnRequest is encrypted and signed.

Note: Refer to section 4.2.5 for more information.

sp.x509cert The name of the public key used to encrypt the SAML response. The certificate

should also be stored under this name in the Intelligence Hub KeyStore. This field
should only be used when the AuthnRequest is encrypted and signed.

Note: Refer to section 4.2.5 for more information.

idp.entityid Identifier of the IdP entity.

idp.single_sign_on_service.url Single sign on endpoint of the IdP. The URL where the AuthnRequest is sent.

idp.single_sign_on_service.binding The SAML protocol binding used to deliver the AuthnRequest message.

Note: The Intelligence Hub currently only supports
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

idp.x509cert The name of public x509 certificate of the IdP. The certificate should also be stored

under this name in the Intelligence Hub KeyStore.

Note: Refer to section 4.2.5 for more information.

security.signature_algorithm Algorithm that the toolkit will use on the signing process.

Supported algorithms:

© 2021 HighByte, Inc. All rights reserved.

53

http://www.w3.org/2000/09/xmldsig#rsa-sha1,
http://www.w3.org/2000/09/xmldsig#dsa-sha1,
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256,
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384,
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

security.digest_algorithm Algorithm that the toolkit will use on the digest process.

Supported algorithms:
http://www.w3.org/2000/09/xmldsig#sha1,
http://www.w3.org/2001/04/xmlenc#sha256,
http://www.w3.org/2001/04/xmldsig-more#sha384,
http://www.w3.org/2001/04/xmlenc#sha512

security.requested_authncontext The authentication context. If this field is not included no AuthContext will be sent
in the AuthnRequest.

Supported AuthContext: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified,

urn:oasis:names:tc:SAML:2.0:ac:classes:Password,
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport,

urn:oasis:names:tc:SAML:2.0:ac:classes:X509,
urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard
urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI,
urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos,
urn:federation:authentication:windows,
urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient,
urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken

security.want_assertions_signed Set to true if the assertion received by the Intelligence Hub are signed. Set to false
if it is not signed.

security.authnrequest_signed Set to true if the AuthnRequest sent by the Intelligence Hub is signed. Set to false if
it is not signed.

security.want_assertions_encrypted Set to true if the assertions received by the Intelligence Hub are encrypted. Set to
false if it is not.

parsing.trim_name_ids Set to true if the name IDs received by the Intelligence Hub need to be trimmed.
Set to false if it is not.

Parsing.trim_attribute_values Set to true if the attribute values received by the Intelligence Hub need to be

trimmed. Set to false if it is not.

Retrieving Roles with SAML 2.0

When logging in using SAML 2.0, the Intelligence Hub depends on the identity provider to send over

the corresponding role names for that user. SAML 2.0 supports custom attributes, and the Intelligence

Hub looks for a custom attribute named ‘roles’. The custom attribute, roles, contains the names of

roles that are defined in the Intelligence Hub. If the SAML 2.0 assertion contains the name of a role

that does not exist in the Intelligence Hub, that role is ignored.

Here is an example SAML 2.0 implementation in the settings file:

"authentication": {

 "providers": ["saml2"],

 "saml2": {

 "sp.nameidformat": "urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress",

 "sp.entityid": "Intelligence Hub entity id",

 "sp.assertion_consumer_service.url": "http(s)://host:port/config/login/idp",

 "idp.entityid": "IDP entity id",

 "idp.single_sign_on_service.url": "IDP login in URL",

 "idp.single_sign_on_service.binding": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect",

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmlenc#sha512

© 2021 HighByte, Inc. All rights reserved.

54

 "idp.x509cert": "IDPCertificate",

 "security.signature_algorithm": "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256",

 "security.digest_algorithm": "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256",

 "security.requested_authncontext": "urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport",

 "security.want_assertions_signed": false,

 "security.authnrequest_signed": false,

 "security.want_assertions_encrypted": false

 }

 }

© 2021 HighByte, Inc. All rights reserved.

55

Appendix B – Expressions and Default Values

Expressions

An expression is simply the right-hand side of an assignment to the attribute it is attached to and can

be as simple as an assignment of an Input, Modeled Instance, Complex Data Element, or as complex

as a computation on one or more Inputs, Modeled Instance Attributes or Complex Data Elements. The

expression forms the basis for conditioning data. The syntax for an expression is basic JavaScript

(widely used and documented online).

Some examples include:

Expression Description

@OPC_Server$Room2B_TSTAT_CV A simple assignment of the raw value associated with input
Room2B_TSTAT_CV on connection OPC_Server.

@SQL$QueryAssetInfo.AssetID A complex data element assignment. Some connectors (e.g., REST,
Sparkplug, SQL) return complex data values that contain one or
more element values. In this example, a SQL connection named
SQL has an input called QueryAssetInfo that returns a result set for
which the element AssetID value is assigned.

@OPC_Server$LineAPartsProduced +
@OPC_Server$LineBPartsProduced +

@OPC_Server$LineCPartsProduced

Assigns the summation of three inputs named LineAPartsProduced,
LineBPartsProduced and LineCPartsProduced on connection

OPC_Server.

@OPC_Server$ProductID.split (\"-\") [1]" Assuming the raw value of ProductID is a string value that is always
formatted as follows: AA-BBBBB-C-DDD.

Assigns the substring BBBBB from the raw value associated with
input ProductID on connection OPC_Server.

Math.sin (@OPC_Server$Device.Signal) Calculates the sine of the raw value associated with input Signal on
connection OPC_Server and assigns the result.

@ServerRoom_Thermostat A simple assignment of a modeled instance within a parent modeled

instance definition.

@ServerRoom_Thermostat.Current >
@ServerRoom_Thermostat.Max

A logical expression that tests if the value associated with attribute
Current of instance ServerRoom_Thermostat is greater than the
value associated with attribute Max of the same named instance.

var data = [1,2,opc$tag]
Java.to(data, "int[]")

Build an array from a primitive tag.

Java.to(Java.from(opc$arraytag).slice(0,2), "int[]")

Return a part of an array.

var value = {

 employees": {
 "name": "steve",
 "value": opc$tag
 }
}
value

Build a complex value (JSON) from primitives.

var retRow;
Java.from(csv$data).forEach(function (item, index) {
 if(parseInt(item["07A7"]) === 916){

 retRow = item;
 }
});
retRow;

Iterate an array of complex data (CSV in this example) and return
the row that meets a given condition.

Default Values

A default value is a static value that forms the basis for adding context or metadata when used

without an expression or setting any initial value when used with an expression that may not be able

to be evaluated under all conditions.

Some examples include:

© 2021 HighByte, Inc. All rights reserved.

56

1. A default could be set to F to indicate the units of temperature for the modeled instance,

where units are not accessible from any other source and no expression can be set.

2. A default could be set to Undefined to indicate that until real-time data can be set by an

expression, the state of the model Instance’s attribute is undefined.

© 2021 HighByte, Inc. All rights reserved.

57

Appendix C – REST Output Templates

The REST output supports templates, which allow control over the REST payload. The template engine

uses Apache FreeMarker. HighByte Intelligence Hub exposes the following API to Apache FreeMarker:

• ${value}

o The value being written out. On it’s on, this evaluates to the hub’s default JSON output

• ${values}

o Used in cases where the output is an array of values versus a single object. Like

${value} this by default evaluates to the default JSON output

• ${value.attribute_name}

o Index into a model to get the value for ‘attribute_name’. As an example, if a model

pressMachine has a cycleCount attribute, this would be ${value.cycleCount} to access

that value

• ${value.name}

o Returns the name of the model instance or alias

• ${value.quality}

o Returns the quality as a string, either Good or Bad

• ${value.time}

o Returns the timestamp as an epoch (UTC)

• ${value.type}

o Returns the model name

• ${value.elements}

o Returns a list of key value pairs, where key is the attribute name and value is the

attribute value

• ${value.array}

o Returns an array, to use FreeMarker array operations

Note the syntax can be chained together. So if “press” has a child model “motor” with an attribute

“amps”, you can access amps using ${value.motor.amps}.

With this API, here are some example use cases. Please see the FreeMarker documentation online for

FreeMarker specific syntax.

<#-- Decorate payload (add around payload) -->

{

"index": "myindex",

"source": "mysource",

"payload": [

 <#list values as value>

 ${value}<#if value_has_next>,</#if>

https://freemarker.apache.org/

© 2021 HighByte, Inc. All rights reserved.

58

 </#list>

]

}

<#-- Rename a field -->

{

"payload": [

 <#list values as value>

 ${value?replace("_name", "name")?replace("_model",

"model")?replace("_timestamp", "timestamp")}<#if value_has_next>,</#if>

 </#list>

]

}

<#-- XML -->

<root>

 <values>

 <#list values as value>

 <value>

 <#list value.elements as name, v>

 <#if name != "motor">

 <${name}>${v.string}</${name}>

 </#if>

 </#list>

 <motor>

 <#list value.motor.elements as name, v>

 <${name}>${v.string}</${name}>

 </#list>

 </motor>

 </value>

© 2021 HighByte, Inc. All rights reserved.

59

 </#list>

 </values>

</root>

<#-- Values in OPC format -->

{

"timestamp": ${.now?long},

"values": [

 <#list values as value>

 {

 "id": "${value.name}",

 "v": ${value},

 "q": ${value.quality},

 "t": ${value.time}

 }<#if value_has_next>,</#if>

 </#list>

]

}

<#-- Values in influxdb format -->

${value.type},name=${value.name} <#list value.elements as name, v>${name}=${v}<#if

name_has_next>,</#if></#list> ${value.time}

<#-- Transform time -->

{

"values": [

 <#list values as value>

 {

 "id": "${value.name}",

 "v": ${value},

© 2021 HighByte, Inc. All rights reserved.

60

 "q": ${value.quality},

 "t": "${value.time?number_to_datetime?iso_utc}"

 }<#if value_has_next>,</#if>

 </#list>

]

}

© 2021 HighByte, Inc. All rights reserved.

61

Appendix D – OSIsoft PI AF SDK Connector

The OSIsoft PI AF SDK Connector uses the OSIsoft AF SDK to communicate with the PI and AF Server.

The agent is a .NET application and is delivered separately from the core HighByte Intelligence Hub

installation. The requirements for the agent are as follows.

1. Windows Operating System

2. The OSIsoft AF SDK/AF Client installed on the system running the agent

3. Microsoft .NET 4.8 or greater

The agent runs as a standalone application, by running the intelligencehub-osisoft.exe OR as a

service. When running standalone, it’s recommended to run the executable with admin level

permissions. To install as a service, run the following command. InstallUtil is found in the .NET

installation directory (%windir%\Microsoft.NET\Framework64\v4.0.30319\InstallUtil.exe).

 installutil intelligencehub-osisoft.exe

The agent connects to the AF SDK/AF Client and opens a port to receive requests from the HighByte

Intelligence Hub instance. By default this communication occurs using secure websockets. On the first

run the agent creates a self-signed certificate called intelligencehub.pfx as well as a settings.json file.

The file contains the following.

{

"port":45290,

"token":"randomtoken"

}

The port controls the port that the agent listens on. This port must be open and available to the

Intelligence Hub connecting to the agent. The token is a random security token created by the agent.

This token must be applied to the Intelligence Hub OSIsoft PI AF SDK connection settings to

authenticate the hub. Any changes to these settings require restarting the agent.

In the Intelligence Hub OSIsoft PI AF SDK connection settings, enter the IP/port of the agent, as well

as the token. The agent also has a local intelligencehub.log file for debug information.

Note the agent connects to the default PI Archive and Asset Framework system configured by the AF

Client using the PI System Explorer.

© 2021 HighByte, Inc. All rights reserved.

62

Appendix E – HTTP Server

The Intelligence Hub configuration can be hosted using a 3rd party web server. To do this, follow the

instructions below.

Check out the HighByte YouTube Channel for video tutorials on how

to install the Intelligence Hub and any required dependencies on
Windows 10 and Ubuntu Linux.

Step 1. Install Tomcat

You may also choose to host the configuration from any web server. Though you should be able to use

any HTTP server, basic guidance on getting up and running with Tomcat 9 is provided.

Step 1. Install and Setup Tomcat

A. Download Tomcat 9 from the web. Currently available at Apache Tomcat Downloads.

Select the binary distribution that is relevant to your OS (one of the compressed .zip or

tar.gz should work).

B. Extract the compressed file to a location where you have read/write/execute privileges to

setup and run TomCat 9.

C. Open the server.xml to modify the HTTP port setting. This file is located in the ./conf

subdirectory where you extracted the compressed file (e.g., apache-tomcat-

9.0.35/conf/server.xml).

D. Within the server.xml file, find the string <Connector port="8080" protocol="HTTP/1.1”.

To change the port, replace 8080 with the port you would like to use (e.g., 45145 will be

used throughout this document). See Figure 45.

E. Consult your IT department and the TomCat 9 documentation to ensure that your HTTP

server setup conforms to your organization’s IT policies.

https://www.youtube.com/playlist?list=PLj-ej4J89GKRlCbIw03MtzeydpkcRUMPq
https://tomcat.apache.org/download-90.cgi

© 2021 HighByte, Inc. All rights reserved.

63

Figure 45

A. Extract HighByte-Intelligence-Hub-2.x (provided with this documentation) to a location where

you have read/write privileges.

B. Copy the extracted contents of HighByte-Intelligence-Hub-2.x/configuration to a location that

is recognizable to your HTTP server.

For TomCat 9, this will be installed in the ROOT for simplicity. Go to the directory called ROOT

under the webapps subdirectory of where you installed the HTTP server (e.g., apache-tomcat-

9.0.35/webapps/ROOT) and delete any files installed by default. Next, copy the contents of

HighByte-Intelligence-Hub-1.x/configuration to this ROOT directory. See Figure 46.

© 2021 HighByte, Inc. All rights reserved.

64

Step 2. Install and Start Configuration

Figure 46

C. Edit the configuration.json file to set the apiBaseUrl to the runtime configuration API endpoint.

If the file does not exist, copy or rename configuration.json.template to configuration-

settings.json.

By default, the endpoint is http://localhost:45245, which constrains configuration access to

web browsers running on the same machine as the runtime.

To configure the product from a remote machine, change localhost to the hostname or IP

address of the machine where the runtime is executing (e.g., http://mymachine:45245,

http://192.168.1.100:45245).

Save the file when finished. You must restart the HTTP server any time changes are made to

this file.

D. Start the HTTP server.

For TomCat 9, go to the bin subdirectory of where you installed the HTTP server (e.g., apache-

tomcat-9.0.35/bin) and execute the startup file associated with your OS (e.g., startup.bat,

startup.sh). See Figure 47.

© 2021 HighByte, Inc. All rights reserved.

65

Figure 47

E. Display the configuration by launching a Web Browser and connecting to

http://localhost:45245 (assuming you set the HTTP port to 45245 under Required

Dependencies | HTTP Server above). See Figure 48.

Figure 48

http://localhost:45145/

	1. System Requirements
	1.1 Hardware
	1.2 Operating System
	1.3 Browser

	2.0 Required Dependencies
	2.1 Java Runtime Environment (JRE)

	3.0 Intelligence Hub Runtime
	3.1 Installation
	3.1.1 Upgrading

	3.2 Usage
	3.2.1 Starting the Runtime
	3.2.2 Stopping the Runtime
	3.2.3 Application-Level Settings
	3.2.4 Project Configuration Backup
	3.2.5 Application-Level Redundancy

	4.0 Intelligence Hub Configuration
	4.1 Administration
	4.1.1 Login
	4.1.2 Set Administrative Password
	4.1.3 Create a User
	4.1.4 Create a Role
	4.1.5 Create a Certificate

	4.2 Project Configuration
	4.2.1 Create a Connection
	4.2.2 Create an Input
	4.2.3 Create an Output
	4.2.4 Create a Flow for a Single Input / Output
	4.2.5 Create a Model
	4.2.6 Create a Modeled Instance
	4.2.7 Create a Flow with a Modeled Instance

	4.3 Event Log and Troubleshooting

	5.0 Central Configuration
	5.1 Enable Central Configuration
	5.2 Create a Network Group
	5.3 Connect a Remote Hub
	5.4 Rename the Remote Hub
	5.5 Remotely Configure the Hub
	5.6 Compare Two Hubs
	5.7 Sync Objects Between Hubs

	Appendix A – Security
	AWS Token Security
	Azure IoT Hub & Azure Event Hubs
	Microsoft SQL Server, MySQL, PostgreSQL
	MQTT Security
	OPC UA Security
	REST Client
	External Identity Provider Setup

	Appendix B – Expressions and Default Values
	Expressions
	Default Values

	Appendix C – REST Output Templates
	Appendix D – OSIsoft PI AF SDK Connector
	Appendix E – HTTP Server

